New drug may stop spread of brain cancer, researchers say

Munson photoJennifer Munson (VTI Photo)

Researchers at Virginia Tech say they may have found a way to stop the inevitable spread of glioblastoma, the deadliest form of brain cancer. The drug basically blocks cancer spread by blocking the way that brain cells respond to the flow of fluid through the brain.

Some current treatments inject a drug directly into the tumor using a catheter, which can make the body’s natural fluids flow through the brain faster than usual, contributing to the spread of cancerous cells. The treatment devised by Jennifer Munson, an assistant professor in the Department of Biomedical Engineering and Mechanics in the College of Engineering, may be a solution.

In an article published on Nov. 19 in Scientific Reports, Chase Cornelison, lead author and a postdoctoral researcher at Virginia Tech, details the use of a drug that Munson’s team found can block the way cancer cells respond to fluid flow. This work is part of a Munson-led five-year research grant project across multiple universities, examining the role of interstitial fluid flow in the spread of glioma cells. Interstitial fluid is the fluid that surrounds cells in the body.

In labs, Cornelison and others on Munson’s team used mice with glioblastoma to test how a particular approach to delivering cancer treatment, called convection enhanced delivery, caused glioma cells to invade the rest of the brain. To block the fluid’s rapid movement and the spread of cancer cells, they tested a drug called AMD3100. The drug, which already has been used in clinics, appeared to be a game changer, Cornelison said.

Could be a game changer


This finding could lead to stopping glioblastoma from spreading, Cornelison said.

“I am hopeful that since the drug that we used to block flow stimulation is currently used in patients that maybe clinicians, when they do consider using convection enhanced delivery, will combine that with this drug,” he said in a news release.

Munson has been studying glioblastoma for more than 10 years, with a more recent focus on the role of interstitial fluid flow on cancer cells and the brain.

“It [glioblastoma] is so deadly, and there hasn’t been a shift in treatment response in decades. Something needs to change,” she said. “With my expertise and looking at fluid flow, maybe there’s an answer there that we haven’t seen.”

Raising awareness of interstitial fluid flow throughout the body is Munson’s aim in her research.

“This is a force that isn’t accounted for much in brain tissues,” she said. “My goal is to have more people thinking about this force and that it can actually have effects on cells that we don’t intend.”

The majority of this research happened at the University of Virginia, where Munson previously worked before she came to Virginia Tech in 2017.

About the Author

Truman Lewis
Truman has been a bureau chief and correspondent in D.C., Los Angeles, Phoenix and elsewhere, reporting for radio, television, print and news services, for more than 30 years. Most recently, he has reported extensively on health and consumer issues for ConsumerAffairs.com and FairfaxNews.com.